Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(49): 19986-19996, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988331

RESUMO

The cyclo[18]carbon (C18) has piqued widespread interest in recent years for its geometrical aesthetic and unique electronic structure. Inspired by it, theoretical investigations of its isoelectronic B9N9 have been published occasionally; however, few studies considered their other companion B6C6N6. In this work, we study the geometric structure, charge distribution, bonding characteristic, aromaticity, and electron delocalization of B6C6N6 and B9N9 for the first time and compare the relevant results with those of C18. Based on the comprehensive analysis of aromaticity indicators such as AV1245, nucleus-independent chemical shifts, anisotropy of the induced current density, magnetically induced current density, iso-chemical shielding surface, and induced magnetic field (Bind), we found that B6C6N6 has definitely a double aromatic character similar to C18 and the aromaticities of the two are very close, while B9N9 is a nonaromatic species. In response to this novel finding, we delved into its nature from an electron delocalization perspective through a localized orbital locator, electron localization function, Fermi hole, and atomic remote delocalization index analyses. The C atom between B and N as an interconnecting bridge strengthens the electron delocalization of the conjugate path, which is the essence of the significant enhancement of the molecular aromaticity from B9N9 to B6C6N6. This work elucidates that within the framework of the isoelectronicity of C18, different methods of atomic doping can achieve molecules with completely different properties.

2.
Phys Chem Chem Phys ; 25(42): 29165-29172, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870160

RESUMO

Based on a computational approach that can accurately describe their geometric structures and electronic spectra, we have theoretically studied the nonlinear optical (NLO) properties of H-capped carbon chains, H-(CC)n-H (n = 3-15), for the first time. Special attention was paid to the size dependence of the molecular (hyper)polarizability of these species through the nonlinear fitting of the data, which formed two power-law formulas of αiso(∞) = -0.206 + 0.264n1.498 and γ‖(∞) = -0.624 + 0.006n3.368 and was thoroughly discussed at the electronic structure level by in-depth wavefunction analyses. The fundamental gap (ΔE) between vertical ionization energy (VIE) and vertical electron affinity (VEA) is found to be related to the molecular (hyper)polarizability. The calculated (hyper)polarizability of the carbon chains H-(CC)n-H (n = 3-15) is more sensitive to the density functional theory (DFT) applied than to the basis set selected. The results are expected to provide theoretical guidance for the property prediction of arbitrarily long carbon chains not yet synthesized.

3.
Chem Commun (Camb) ; 59(64): 9770-9773, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486103

RESUMO

A novel supramolecular complex (2C18@OPP) constructed from two kinds of unique nanorings, all-carboatomic cyclo[18]carbon (C18) and figure-of-eight carbon hoop (OPP), has been studied theoretically from the perspective of an extraordinary dual-motor nanorotator. The rotational barrier of C18 in OPP is extremely small at ambient temperature, implying the possibility of the host-guest complex as an ultrafast nanorotator. The rotational characteristics and thermodynamic stability of the nanorotator at different temperatures were then explored. The rotational behaviors of the two C18 rings in OPP are basically independent of each other. The supramolecule investigated in this work is the first example of a dual-motor nanorotator that promises to be an important building block for constructing complicated molecular machines.

4.
Phys Chem Chem Phys ; 25(25): 16707-16711, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37313788

RESUMO

The recently synthesized novel figure-of-eight nanohoop with two strained oligoparaphenylenes (OPPs) was theoretically designed to collect and stabilize new allotropic carbon cyclo[18]carbon (C18) through molecular assembly. The size adaptability and shape complementarity of C18 to OPP make it possible for them to combine into extraordinary ring-in-ring supramolecules. Thermodynamic analysis of 2C18@OPP showed that the host-guest complex should spontaneously form below 404 K. Molecular dynamics (MD) simulations demonstrated that the assembly of C18 and OPP into host-guest complexes of up to 1 : 2 can occur at ambient temperature. Various real-space function analyses revealed that the nature of the non-covalent interaction between C18 and OPP is the van der Waals (vdW) attraction characterized by π-π stacking. Photoexcitation makes the host-guest complexes less stable in their S1 state by causing the central linker to flatten.

5.
Chemistry ; 29(31): e202300348, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36918359

RESUMO

Herein, the electronic structure and bonding character of the stable cyclo[18]carbon (C18 ) precursor, C18 Br6 , are thoroughly characterized by molecular orbital (MO), density of states (DOS), bond order (BO), and interaction region indicator (IRI) analyses. The delocalization characters of out-of-plane and in-plane π-electrons (labeled as πout - and πin -electrons, respectively) in bonding regions were examined using localized orbital locator (LOL) and electron localization function (ELF). The aromaticity was investigated, studying the molecular magnetic response to external magnetic field by computing the magnetically induced current density (Jind ), iso-chemical shielding surface (ICSS), anisotropy of the induced current density (AICD), and the induced magnetic field (Bind ). All these analyses indicate that C18 Br6 is a globally aromatic species with lower aromaticity than C18 , and the blocking of in-plane π-conjugation (labeled as πin -conjugation) by the presence of -Br substituents in it is the underlying cause for the weakening of molecular aromaticity.

6.
Phys Chem Chem Phys ; 24(12): 7466-7473, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35274653

RESUMO

The electronic spectra and (hyper)polarizability of C18-(CO)n (n = 2, 4, and 6) are studied using theoretical calculations to reveal the effect of introducing carbonyl (-CO) groups on the molecular optical properties. Successive introduction of -CO groups is observed to cause a red-shift in the absorption spectrum, but maximum absorption of all molecules is mainly due to the charge redistribution within the C18 moiety. The (hyper)polarizabilities of the cyclocarbon oxides present an ascending trend with the -CO groups in the molecule, and the higher-order response properties are more sensitive. With (hyper)polarizability density analysis and (hyper)polarizability contribution decomposition, the fundamental reasons for the difference of (hyper)polarizability of different molecules are systematically discussed from the perspective of physical and structural origins, respectively. Significant optical resonances under the frequency-dependent fields are found for the (hyper)polarizabilities of the cyclocarbon oxides, which is in contrast to the insignificant influence on their polarizability.

7.
Chemistry ; 28(7): e202103815, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897864

RESUMO

The bonding character, electron delocalization, and aromaticity of the cyclo[18]carbon (C18 ) precursors, C18 -(CO)n (n=6, 4, and 2), have been studied by combining quantum chemical calculations and various electronic wavefunction analyses with different physical bases. It was found that C18 -(CO)n (n=6, 4, and 2) molecules exhibit alternating long and short C-C bonds, and have out-of-plane and in-plane dual π systems (πout and πin ) perpendicular to each other, which are consistent with the relevant characteristics of C18 . However, the presence of carbonyl (-CO) groups significantly reduced the global electron conjugation of C18 -(CO)n (n=6, 4, and 2) compared to C18 . Specifically, the -CO group largely breaks the extensive delocalization of πin system, and the πout system is also affected by it but to a much lesser extent; as a consequence, C18 -(CO)n (n=6, 4, and 2) with larger n shows weaker overall aromaticity. Mostly because of the decreased but still apparent πout electron delocalization in the C18 -(CO)n (n=6, 4, and 2), a notable diatropic induced ring current under the action of external magnetic field is observed, demonstrating the clear aromatic characteristic in the molecules. The correlation between C18 -(CO)n (n=6, 4, and 2) and C18 in terms of the gradual elimination of -CO from the precursors showed that the direct elimination of two CO molecules in C18 -(CO)n (n=6, 4, and 2) has a synergistic mechanism, but it is kinetically infeasible under normal conditions due to the high energy barrier.

8.
Chem Asian J ; 16(16): 2267-2271, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34180155

RESUMO

Inspired by recent experimental observation of molecular morphology and theoretical predictions of multiple properties of cyclo[18]carbon, we systematically studied the photophysical and nonlinear optical properties of cyclo[2N]carbons (N=3-15) allotropes through density functional theory. This work unveils the unusual optical properties of the sp-hybridized carbon rings with different sizes. The remarkable size dependence of the optical properties of these systems and their underlying nature are profoundly explored, and the relevance between aromaticity and optical properties are highlighted. The extrapolation curves fitted for energy level of frontier molecular orbitals, maximum absorption wavelength, and (hyper)polarizability of considered carbon rings are presented, which can be used to reliably predict corresponding properties for arbitrarily large carbon rings. The findings in this study will facilitate the exploration of potential application of cyclocarbons in the field of optical materials.

9.
Dalton Trans ; 49(44): 15682-15692, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33124630

RESUMO

The synthesis of competitive, affordable and sustainable electrocatalysts via simple and scalable methods is highly desirable for the oxygen evolution reaction (OER). Usually, expensive, complex, time-consuming methods are applied to prepared suitable electrocatalysts for the OER. In contrast, a single-step thermal method is simple and inexpensive. Nickel and iron-based composite materials are potential candidates as OER catalysts. Accordingly, herein, Se-doped Fe2O3-decorated Ni/NiO particles on carbon cloth (Se-Fe2O3@Ni/NiO/CC) were synthesized via a facile and scalable one-step thermal method. The individual Se-Fe2O3@Ni/NiO particles were accommodated in holes in the carbon fibers of CC. The optimized Se-Fe2O3@Ni/NiO/CC-2 sample exhibited an outstanding OER performance with an overpotential of 205 mV at the current density 10 mA cm-2, small Tafel slope of 36 mV dec-1, and good stability in 1.0 M KOH electrolyte. The outstanding catalytic performance was mainly attributed to the heterointerfaces between Se-Fe2O3 and Se-Ni/NiO. Moreover, the accommodation of the Se-Fe2O3@Ni/NiO particles in the holes of CC restricted the aggregation of the particles, and CC provided a conductive substrate for the OER process. Thus, this work provides a simple, scalable and effective strategy for designing and engineering of outstanding electrocatalysts for the OER.

10.
Analyst ; 144(10): 3260-3266, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30982838

RESUMO

We synthesized six 1-oxo-1H-phenalene-2,3-dicarbonitrile (OPD)-based probes with various leaving groups using an arylthioether linker and for the first time identified the probe O-NH2 capable of highly selective detection of glutathione over cysteine/homocysteine in vitro and in vivo based on an aromatic nuclear substitution reaction (SNAr) mechanism. The fluorescence of the probe O-NH2 was quenched because of the photoinduced electron transfer (PET) process, but switched on by a glutathione-triggered specific recognition reaction between the probe O-NH2 and glutathione. The recognition mechanism for glutathione was explored and verified by theoretical calculations and ESI-MS analysis. Using O-NH2 as the probe, the GSH fluorescence images were demonstrated in HeLa cells and the intracellular GSH levels in different imatinib-resistant K562 tumor cells were firstly determined. Further, O-NH2 was utilized to detect glutathione in D. magna and zebrafish embryos. The combined results indicate that O-NH2 can be applied as an effective tool for detecting glutathione in biological investigations.


Assuntos
Corantes Fluorescentes/química , Glutationa/análise , Nitrilas/química , Fenalenos/química , Animais , Linhagem Celular Tumoral , Daphnia , Desenho de Fármacos , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Modelos Químicos , Nitrilas/síntese química , Nitrilas/toxicidade , Fenalenos/síntese química , Fenalenos/toxicidade , Espectrometria de Fluorescência/métodos , Peixe-Zebra
11.
Environ Sci Technol ; 52(18): 10617-10626, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30146871

RESUMO

Perfluorooctanesulfonate (PFOS) is a compound that has wide applications with extreme persistence in the environment and the potential to bioaccumulate, and could induce adverse effects to ecosystems. We investigated the degradation of PFOS by laccase-induced enzyme catalyzed oxidative humification reactions (ECOHRs) using 1-hydroxybenzotriazole (HBT) as a mediator. Approximately 59% of PFOS was transformed over 162 days of incubation, and the reaction appeared to follow a pseudo-first-order model with reaction rate constant of 0.0066/ d ( r2 = 0.87) under one condition tested. Using differential absorption spectra and theoretical simulation, we elucidated the interaction between Cu2+/Mg2+ and PFOS, and proposed that Cu2+ and Mg2+ could serve as a bridge to bring the negatively charged PFOS and laccase to proximity, thus increasing the chance of radicals that are released from laccase to reach and react with PFOS. In addition, density functional theory modeling showed that PFOS complexation to the metal ions could unlock its helical configuration and decrease the C-C bond energy of PFOS. These changes allow the attack of PFOS C-C backbone by radicals to become easier. On the basis of products identification, we proposed that direct attack of PFOS by the HBT radical initiated the free radical chain reaction processes and led to the formation of fluoride and partially fluorinated compounds. These results suggest that ECOHR is a potential pathway by which PFOS could be degraded in the environment, and it may make a viable approach to remediate PFOS contamination via amendment of appropriate enzymes and mediators.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ecossistema , Lacase
12.
J Phys Chem A ; 122(9): 2344-2352, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29376364

RESUMO

Linear and nonlinear optical properties of experimentally synthesized triphenylamine-indandione chromophores were investigated by time-dependent density functional theory calculations. The absorption and emission spectra, as well as the static and dynamic first hyperpolarizabilities related to the combined effect of substituent introduction and symmetry breaking, were discussed in detail. Theoretical analysis indicated the uniting of indandione acceptor group(s) with a precursor (triphenylamine, TriPhA), with the molecular symmetry destroyed simultaneously, leads to an obvious change in both the peak position and intensity of the linear spectra. The same process can also substantially magnify the molecular first hyperpolarizabilities. The triphenylamine-indandione molecules exhibit efficiencies in static first hyperpolarizability relative to that of the electron-donating TriPhA component and the electron-accepting indandione moiety. The optical nonlinearity would be further expanded under the influence of a resonance effect induced by appropriate excitation. Incident light with a wavelength nearly two times the one-photon absorption is likely to cause a greater frequency dispersion response. In particular, the first hyperpolarizabilities of the title compounds can be enlarged by about 3.2 times on average by resonance enhancement at a fundamental wavelength of 1064 nm.

13.
J Nanosci Nanotechnol ; 17(2): 1400-406, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-29687973

RESUMO

A facile liquid impregnation method followed by a reduction treatment was applied for loading transition metals nickel, nickel-platinum, and platinum into zeolitic imidazolate framework (ZIF-8)/graphene oxide (GO) as potential adsorbents for ambient-temperature hydrogen storage. These materials have been characterized by powder X-ray diffraction, infrared spectra, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma-emission spectroscopy, and gas adsorption apparatus for their physical and chemical properties. The metal-doped ZIF-8/GO composites maintained the morphology of pristine ZIF-8, although their specific surface areas significantly decreased. The metal nanoparticles in the corresponding composites have average diameters of 4.2­5.1 nm, and uniformly located on the external surface and edges of ZIF-8/GO network. Hydrogen adsorption amounts on metal-doped samples were enhanced by factors of 2.3­3.8 times over ZIF-8 at 298 K due to the spillover effect. Notably, the Pt-doped ZIF-8/GO sample seems to be the best adsorbent for hydrogen storage because of the higher catalytic reactivity of platinum than nickel.

14.
J Phys Chem A ; 119(9): 1573-89, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25506668

RESUMO

Conformational changes of α,α-trehalose in a vacuum, water, and 0-20 wt % NaCl solutions were investigated by means of molecular dynamics (MD) simulations at different levels of density function theory (DFT) and with fixed-charge nonpolarizable and variable-charge force fields (FFs), respectively. The relative thermodynamic stability of trehalose is enhanced by the formation of intercycle and/or intracycle hydrogen bonds, but some thermodynamically unfavorable structures can be sampled in the DFT-based ab initio MD simulation. The polarization effects of polar trehalose molecule in aqueous and NaCl solutions were studied by a series of MD simulations with both the conventional nonpolarizable and polarizable force field models. In the polarizable model, the partial charges of trehalose were updated every 2 ps using DFT calculations and fused with the other FF parameters for the energy calculation and MD simulation. Around the trehalose, water molecules located in an asymmetry model and trehalose have a stronger tendency to bind with water molecules than Na(+) and Cl(-) ions. When the trehalose concentration is increased from 3.26 to 6.31 wt % in salt aqueous solution, the two trehalose molecules periodically approach each other in a nearly anhydrate state and leave a way to keep the favorable hydration structure with the mean trehalose-trehalose distance of 8.6 Å. The similarity between the solvated dimer packing styles (shoulder-by-shoulder or head-to-head) and crystal stacking can be used to make an extrapolation to higher sugar concentrations and to rationalize the bioprotection function of trehalose in high salt concentration.


Assuntos
Simulação de Dinâmica Molecular , Cloreto de Sódio/química , Trealose/química , Conformação Molecular , Soluções , Vácuo , Água/química
15.
Chemosphere ; 59(4): 467-71, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15788169

RESUMO

The DFT-B3LYP method, with the basis set 6-311G( * *), was employed to calculate the molecular geometries and electronic structures of 25 nitroaromatics. The acute toxicity (-lgEC(50)) of these compounds to the algae (Scenedesmus obliguus) along with hydrophobicity described by logK(OW), and two quantum chemical parameters-energy of the lowest unoccupied molecular orbital, E(LUMO), and the charge of the nitro group, [ForQ(NO2), were used to establish the quantitative structure-activity relationships (QSARs). For 18 mononitro derivatives, the hydrophobicity parameter logK(OW) could interpret the toxic mechanism successfully. Dinitro aromatic compounds were susceptible to be reduced to aniline for their electrophilic nature. Their toxicity was controlled mainly by electronic factors instead of hydrophobicity. The electronic parameters, E(LUMO) and Q(NO2), were used to yield the following model: -lg EC(50) = 3.746 - 25.053 E(LUMO) + 6.481 Q(NO2) (n=22, R=0.926, SE=0.206, F=56.854, P<0.001). The predicted toxic values using the above equation are in good agreement with the experimental values.


Assuntos
Hidrocarbonetos Aromáticos/toxicidade , Nitrocompostos/toxicidade , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Hidrocarbonetos Aromáticos/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Lineares , Nitrocompostos/química , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...